hearing loss and work, case study

By Sarah Ellsworth

Everyone has their own opinions about remote work, our “new normal” approach to office-based professions during the COVID-19 pandemic.

Some people still struggle with the lack of face-to-face interaction, while others became acclimated to their virtual environments instantly. Unlike many workers who commuted to a physical office each day prior to March 2020, my daily routine has not changed.

I have been working from home since 2014 for a company that provides remote accounting services to nonprofit organizations around the country. 

I know that I am lucky to have avoided a career disruption during this time. Still, I recognize that the transition from in-person to online work has been difficult for people like me. I have a hearing loss, and I can appreciate that visual cues are more likely to be missed when we can’t collaborate with coworkers in the same room. I don’t wear hearing aids, but rely on lipreading for communication. I was born with a genetic hearing loss, so it’s been part of my entire life.

Joining her current company as a remote employee was a dream come true for Sarah, who was born with a hearing loss. Technology helps Sarah to work with confidence. Image credit:    FreePik   .
Joining her current company as a remote employee was a dream come true for Sarah, who was born with a hearing loss. Technology helps Sarah to work with confidence. Image credit: FreePik.

As someone who’s only known a life with difficulty hearing, take it from me. I’m here to encourage folks with hearing loss that this new normal — my old normal — is actually something to embrace. I’ve had many different jobs in my life — outdoor recreation, retail sales, mail carrier, publicist, blogger — but I’ve always gravitated towards positions where I’m not working against my hearing loss. Joining my current company as a remote employee was a dream come true. 

If there was ever a time to live with hearing loss, it’s now. Technology has improved exponentially in recent years, and the internet has allowed people with hearing loss to participate in communities and real-time conversations in a way that used to be almost impossible. 

One significant recent technological development is the live captioning built into Google Meet video conferencing software. They’re surprisingly accurate! Many of the other tools that my colleagues and I use — email, instant messages, virtual project management systems — are also really helpful for people with hearing loss. 

Nothing is perfect, of course. While, like most Millennials, I do my best to avoid phone calls, automated phone menus are the bane of my existence. It can be especially tough for people with hearing loss to get through a phone tree or automated greeting when the robot on the other end doesn’t understand, “What? Could you repeat that please?” 

Sarah Ellsworth Headshot.jpg

Despite the challenges that remain, I’m excited to see what the future holds for those of us with hearing loss. From new advancements in technology to more flexible working environments, change can be a wonderful thing.

Sarah Ellsworth is Communications Director at Altruic Advisors, a virtual/remote accounting firm for nonprofit organizations. She lives in Colorado.

are on-line hearing tests reliable?

1. Know what online tests can and cannot reveal

Recognize that these assessments can be a first step in learning about hearing loss, but aren’t comparable to a highly accurate, in-depth evaluation by a trained professional.

“Online tests are intended to screen your hearing, but they are not audiogram tests,” said Sharron Nixon, hearing services manager. “They only indicate whether you may have loss. You still need a full test in a soundproof chamber with a professional.”

2. Look for tests with real-world scenarios

Auditory Insight president Nancy M. Williams was the lead author of a study that looked at how hearing tests can best engage users. “You want to interact with a test that will explain your hearing loss in real-world conditions, in real-world terms,” she said. In particular, she praised those by Miracle-Ear and Starkey for featuring relatable scenarios. For instance, Miracle-Ear’s test replicates being in a train station. “The announcement comes on and broadcasts the platform for your train,” Williams explained. “That’s a real stressor for people with hearing loss. The announcer is often speaking over a lot of background noise.”

In Starkey’s evaluation, users are in a café and need to tune into conversations over the hubbub around them. These tests can provide valuable intel on how the test-taker fares in these everyday situations.

3. Recognize that these tests offer privacy – which can be a relief

While hearing loss—especially the age-related kind—affects many people, shame surrounding this disability can hinder acceptance. “I think these tests are really important because a lot of people with hearing loss have a need for privacy,” Williams said. “Not everybody is ready to go to the audiologist and have their hearing loss announced to them.”

Dr. Archelle Georgiou, the Chief Health Officer of Starkey Hearing, previously told Hearing Tracker how an online hearing test helped her mother move forward and address her hearing loss. “It provided objective evidence that she did indeed have hearing loss, and I think that’s the moment she took it seriously,” Dr. Georgiou said.

4. Avoid the temptation to pump up the volume

Your computer’s volume setting may impact the results of an online test. ReSound’s hearing test, for example, tells users to make sure that “the volume is set at a comfortable level.” But a comfortable level could be much louder for someone with hearing loss than without—and it may also be higher than what an audiologist would use.

Amber Bright, who lives in Tennessee, took an online hearing test once and received different results than what her audiologist uncovered. “It’s not really comparable. It can be ‘cheated’ by adjusting the volume on the computer, and external equipment [like certain speakers] can also amplify sounds,” Bright said. So keep the volume at a moderate level, and consider your results directional but not definitive.

5. Go ahead and boost your product knowledge

If you have an appointment for a hearing test, the audiologist will likely suggest getting hearing aids if a loss is detected. Some online hearing tests also nudge this process along, according to Williams. “An example is getting a product recommendation based on the type of hearing loss detected,” she said. She highlighted Audicus as an example of this. This information about appropriate devices can help deepen your knowledge.

If an online hearing test does indicate deficits, you’ll be primed to make your next move: contacting an audiologist Hearing Aid Specialist, or ENT. They can then do a full-fledged assessment and recommend the right devices to support your hearing.

Opiods and hearing loss

Why Hearing Loss May Increase Your Risk of Opioid Addiction

Here’s a shocking statistic: Deaf and hard of hearing people are twice as likely to develop a prescription opioid-use disorder than their hearing counterparts. That finding was uncovered by Dr. Michael M. McKee, a family physician with hearing loss who leads the Deaf Health Clinic at Michigan Medicine.

Dr. McKee noticed that many of his new patients were taking controlled substances to address chronic pain. He began to wonder if hearing loss was a factor, and set out to formally explore the relationship between hearing loss and substance use. His findings were published the American Journal of Preventative Medicine.

Dr. McKee’s key finding was that adults (aged 18-49) with hearing loss were significantly more likely to develop an opioid use disorder when compared to their normal hearing peers, especially for those younger than 35. Older adults with hearing loss were no more vulnerable than their peers.

Understanding the hearing and pain connection

Dr. McKee became concerned that his patients’ high number of prescriptions might be due to communication issues. If information isn’t fully shared, it presents challenges to receiving optimal care. “Whether it’s back pain, fibromyalgia, [or both] of those conditions, chronic pain requires a lot of communication to address it,” Dr. McKee said. “Most doctors want to avoid controlled substances because of [the risk of] dependency. But when communication breaks down…these issues pop-up.”

During the current COVID-19 pandemic, communication barriers have intensified. Masks block lipreading; a dearth of interpreters at some in-person appointments due to social distancing requirements may also make matters more difficult. If deaf or hard-of-hearing patients cannot understand their doctors, “they are not being taken care of properly,” said Gregory Shuler, RN. BC. MSN., of Worcester Recovery Center and visiting instructor at Worcester State University, when talking with Hearing Tracker.

Why aren’t older Americans with hearing loss at risk?

Interestingly, the occurrence of opioid use disorder among older patients (50+) was the same regardless of whether they had hearing loss or normal hearing. Dr. McKee attributes this to doctors being more aware that older patients may experience age-related hearing loss, leading to improved communication about pain management with older adults with hearing loss.

Advocating for better care and communication

Dr. McKee finds it essential to empower patients to get their needs met but knows this isn’t always easy. Some are simply not comfortable discussing how their hearing loss affects them. “They get to a point where they give up because the barriers are huge. There’s stigma,” Dr. McKee says. “On top of that, some people are not comfortable saying ‘I can’t hear.’”

Dr. McKee cites the Hearing Loss Association of America’s Communication Access Plan as a way that those with hearing loss can address the situation with their doctors. It all boils down to “explaining what is the way to best communicate with me,” he said, “trying to be more proactive instead of reactive on how we address communication needs or combinations needed.” Having this alignment between patient and healthcare professional can improve how well symptoms and sentiments are shared, leading to better care.

How healthcare professionals can help

The medical community can also play an important role in diminishing opioid-use disorder. Previously the charge nurse at the deaf unit for psychiatric adult and adolescent patients at Worcester State Hospital, Shuler—along with other health professionals—outlined how providers could improve communication with deaf patients in Nursing. These steps could also apply to interacting with those who are hard of hearing, too.

  1. Ask the patient what you can do to help improve the communication process.
  2. Don’t assume the patient can hear and understand what you’re saying just because they are wearing a hearing aid.
  3. Ask the patient what communication tools (such as a whiteboard, computer, or tablet) work best for them
  4. Only one person should talk at a time in a group situation.

Shuler also advocates for professional sign-language interpreters in medical settings instead of relying on the patient’s family or friends, who may have their own biases when signing. “You need someone who is following a specific code of ethics, is a neutral party, and is trained to interact between the deaf person and the hearing person,” Shuler said. Patients may want to request an interpreter prior to their appointments as well.

Overcoming the opioid issue

To address the heightened risk of substance-use issues in deaf and hard of hearing patients, Dr. McKee says that doctors could benefit from communication training, starting in medical school. He says doctors must learn to take a step back and recognize risks that hard of hearing people face.

“These people often have higher rates of mental-health issues, which can go hand in hand with opioid-use disorders,” Dr. McKee said. “Many deaf and hard-of-hearing individuals have depression, anxiety, interpersonal violence, abuse from past, and they may struggle with lower socio-economic statuses.”

As the healthcare community recognizes this issue—and as patients demand appropriate communication—the link between hearing issues and prescription opioid-use disorder will hopefully be unraveled and eliminated.

How we hear science

Hearing Acrobatics

Dynamic, delicate grip between protein filaments enables hearing

By KEVIN JIANG February 8, 2021 Research

hair cells

A scanning electron microscope image of a hair bundle protruding from a sensory cell in the inner ear. Image: David Furness/Wellcome Collection (CC-BY-NC 4.0)

The sense of hearing is, quite literally, a molecular tightrope act. Turns out, it involves acrobatics as well.

In a paper published in Nature Communications on Feb 8, researchers at Harvard Medical School and Boston Children’s Hospital show that a dynamic and delicate connection between two pairs of diminutive protein filaments plays a central role in hearing.

The tension held by these filaments, together called a tip link, is essential for the activation of sensory cells in the inner ear. The team’s analyses reveal that the filaments, which are joined end-to-end, work together like trapeze artists holding hands. Their grasp on each other can be disrupted, by a loud noise, for example. But with a two-handed grip, they can quickly reconnect when one hand slips.

Get more HMS news here

The findings present a new understanding of the molecular underpinnings of hearing, as well as the sense of balance, which arises from similar processes in the inner ear. Disorders of deafness and balance have been linked to mutations in tip links, and the study results could lead to new therapeutic strategies for such disorders, according to the authors.

“This tiny apparatus, made of less than a dozen proteins, is what helps change sound from a mechanical stimulus into an electrical signal that the brain can decipher,” said co-corresponding author David Corey, the Bertarelli Professor of Translational Medical Science at HMS. “Understanding how these proteins work provides insights into the secrets of the sensation of sound.”

The dynamic connection between the filaments may also function as a circuit breaker that protects other cellular components, according to the researchers.

“I think our study gives us a sense of awe for how perfectly engineered this system in the ear is,” said co-corresponding author Wesley Wong, HMS associate professor of biological chemistry and molecular pharmacology at Boston Children’s. “It maintains a delicate balance between being just strong enough to carry out its function but weak enough to break to potentially preserve the function of other elements that can’t be as easily reformed.”

Decoding a handshake

For hearing to occur, cells must detect and translate pressure waves in the air into bioelectrical signals. This task falls upon hair cells, the sensory cells of the inner ear. Protruding from these cells are bundles of hair-like structures, which bend back and forth as pressure waves move through the inner ear.

tip links
A close up of tip links connecting the stereocilia of a hair cell. Image: David Furness/Wellcome Collection (CC-BY-NC 4.0)

Tip link filaments physically connect each hair to another and are anchored onto specialized ion channels. As the bundle moves, the tension of the tip links changes, opening and closing the channels like a gate to allow electric current to enter the cell. In this way, tip links initiate the bioelectrical signals that the brain ultimately processes as sound.

In previous studies, Corey and colleagues explored the composition of tip links and identified the precise atomic structure of the bond between the two protein filaments. Intriguingly, this bond was evocative of a molecular handshake, according to the authors.

In the current study, CoreyWong, and the team set out to understand the nature of this handshake. To do so, they applied single-molecule force spectroscopy, a technique that often uses optical tweezers—highly focused laser beams that can hold extremely small objects and move them by distances as short as a billionth of a meter.

The researchers, led by study first authors Eric Mulhall and Andrew Ward, both research fellows in neurobiology in the Blavatnik Institute at HMS, coated microscopic glass beads with strands of either protocadherin-15 or cadherin-23, the two proteins that make up the tip link. Using optical tweezers, they moved beads close to each other until the protein strands stuck together end to end and then measured the forces needed to pull the bonds apart.

Stronger than the sum

Each tip link is made up of two strands of both proteins. The team found that the strength of this double-stranded bond far surpassed the strength of the bond between individual strands of either protein. Under low tension, a double-stranded bond lasted ten times longer than a single-stranded bond before breaking.

This increased strength appears to be due to the dynamic nature of the connection, according to the authors. Rather than acting as a simple static rope, the filaments detach and reattach to each other within tenths of a second. A force may break one pair of strands apart, but the other pair can remain connected long enough for the broken pair to rejoin.

acrobats
The bond between tip link filaments resembles an acrobatic “two-handed grip.” Image: David Corey
Trapeze artists
 Christina Saran and Daniel Simard. Image: Feld Entertainment

At extremely high forces, however, the double-stranded bond breaks rapidly. This feature may help to prevent catastrophic damage to other components of the hair cell, the authors said.

“If the tip link were super strong, then when exposed to a very loud sound it might rip the whole complex out of the cell membrane, which would be hard to recover from,” said Wong, who is also an associate faculty member at the Wyss Institute for Biologically Inspired Engineering at Harvard.

“The ability to break with loud sounds is analogous to a mechanical circuit breaker,” he added. “This use of multiple weak bonds to form a tunable biological circuit breaker could potentially be very interesting for synthetically engineered systems.”

Surprisingly, the team found that under resting tension, each tip link lasts only around eight seconds before it breaks. Their analyses, coupled with evidence from other studies, suggest that new tip links can form rapidly from other strands of protein nearby. Together, the results support a new paradigm of highly dynamic tip link formation and rupture that both enables and protects hearing.

The team also looked at mutations to protocadherin-15 that are linked to Usher syndrome, a rare hereditary disorder of deafness and blindness. Their experiments suggest that some of these mutations can greatly weaken the bond between the tip link filaments. This may be why the disorder leads to deafness, and further mechanistic understanding of this process could lead to new therapeutic approaches, the authors said.

“It’s hard to fix something if you don’t really know what’s broken, and we are optimistic that a better understanding can help lead to new solutions,” Corey said.

In addition, the new findings may help inform study in other areas of the body. 

“We have many different mechanical senses besides hearing, such as touch, the sensation of blood pressure, and certain types of pain,” Corey added. “We understand hearing in more molecular detail than any of the others—knowledge that can help us probe the workings of other mechanical senses.”

Additional authors on the study include Darren Yang and Mounir Koussa.

The work was supported by the National Institutes of Health (grants F31 DC016199, R01 DC000304, R01 DC002281, and R35 GM119537).

HEARING EXPLAINED by new science

How we hear Hear

Dynamic, delicate grip between protein filaments enables hearing

By KEVIN JIANG February 8, 2021 Research

hair cells

A scanning electron microscope image of a hair bundle protruding from a sensory cell in the inner ear. Image: David Furness/Wellcome Collection (CC-BY-NC 4.0)

The sense of hearing is, quite literally, a molecular tightrope act. Turns out, it involves acrobatics as well.

In a paper published in Nature Communications on Feb 8, researchers at Harvard Medical School and Boston Children’s Hospital show that a dynamic and delicate connection between two pairs of diminutive protein filaments plays a central role in hearing.

The tension held by these filaments, together called a tip link, is essential for the activation of sensory cells in the inner ear. The team’s analyses reveal that the filaments, which are joined end-to-end, work together like trapeze artists holding hands. Their grasp on each other can be disrupted, by a loud noise, for example. But with a two-handed grip, they can quickly reconnect when one hand slips.

Get more HMS news here

The findings present a new understanding of the molecular underpinnings of hearing, as well as the sense of balance, which arises from similar processes in the inner ear. Disorders of deafness and balance have been linked to mutations in tip links, and the study results could lead to new therapeutic strategies for such disorders, according to the authors.

“This tiny apparatus, made of less than a dozen proteins, is what helps change sound from a mechanical stimulus into an electrical signal that the brain can decipher,” said co-corresponding author David Corey, the Bertarelli Professor of Translational Medical Science at HMS. “Understanding how these proteins work provides insights into the secrets of the sensation of sound.”

The dynamic connection between the filaments may also function as a circuit breaker that protects other cellular components, according to the researchers.

“I think our study gives us a sense of awe for how perfectly engineered this system in the ear is,” said co-corresponding author Wesley Wong, HMS associate professor of biological chemistry and molecular pharmacology at Boston Children’s. “It maintains a delicate balance between being just strong enough to carry out its function but weak enough to break to potentially preserve the function of other elements that can’t be as easily reformed.”

Decoding a handshake

For hearing to occur, cells must detect and translate pressure waves in the air into bioelectrical signals. This task falls upon hair cells, the sensory cells of the inner ear. Protruding from these cells are bundles of hair-like structures, which bend back and forth as pressure waves move through the inner ear.

tip links
A close up of tip links connecting the stereocilia of a hair cell. Image: David Furness/Wellcome Collection (CC-BY-NC 4.0)

Tip link filaments physically connect each hair to another and are anchored onto specialized ion channels. As the bundle moves, the tension of the tip links changes, opening and closing the channels like a gate to allow electric current to enter the cell. In this way, tip links initiate the bioelectrical signals that the brain ultimately processes as sound.

In previous studies, Corey and colleagues explored the composition of tip links and identified the precise atomic structure of the bond between the two protein filaments. Intriguingly, this bond was evocative of a molecular handshake, according to the authors.

In the current study, CoreyWong, and the team set out to understand the nature of this handshake. To do so, they applied single-molecule force spectroscopy, a technique that often uses optical tweezers—highly focused laser beams that can hold extremely small objects and move them by distances as short as a billionth of a meter.

The researchers, led by study first authors Eric Mulhall and Andrew Ward, both research fellows in neurobiology in the Blavatnik Institute at HMS, coated microscopic glass beads with strands of either protocadherin-15 or cadherin-23, the two proteins that make up the tip link. Using optical tweezers, they moved beads close to each other until the protein strands stuck together end to end and then measured the forces needed to pull the bonds apart.

Stronger than the sum

Each tip link is made up of two strands of both proteins. The team found that the strength of this double-stranded bond far surpassed the strength of the bond between individual strands of either protein. Under low tension, a double-stranded bond lasted ten times longer than a single-stranded bond before breaking.

This increased strength appears to be due to the dynamic nature of the connection, according to the authors. Rather than acting as a simple static rope, the filaments detach and reattach to each other within tenths of a second. A force may break one pair of strands apart, but the other pair can remain connected long enough for the broken pair to rejoin.

acrobats
The bond between tip link filaments resembles an acrobatic “two-handed grip.” Image: David Corey
Trapeze artists
 Christina Saran and Daniel Simard. Image: Feld Entertainment

At extremely high forces, however, the double-stranded bond breaks rapidly. This feature may help to prevent catastrophic damage to other components of the hair cell, the authors said.

“If the tip link were super strong, then when exposed to a very loud sound it might rip the whole complex out of the cell membrane, which would be hard to recover from,” said Wong, who is also an associate faculty member at the Wyss Institute for Biologically Inspired Engineering at Harvard.

“The ability to break with loud sounds is analogous to a mechanical circuit breaker,” he added. “This use of multiple weak bonds to form a tunable biological circuit breaker could potentially be very interesting for synthetically engineered systems.”

Surprisingly, the team found that under resting tension, each tip link lasts only around eight seconds before it breaks. Their analyses, coupled with evidence from other studies, suggest that new tip links can form rapidly from other strands of protein nearby. Together, the results support a new paradigm of highly dynamic tip link formation and rupture that both enables and protects hearing.

The team also looked at mutations to protocadherin-15 that are linked to Usher syndrome, a rare hereditary disorder of deafness and blindness. Their experiments suggest that some of these mutations can greatly weaken the bond between the tip link filaments. This may be why the disorder leads to deafness, and further mechanistic understanding of this process could lead to new therapeutic approaches, the authors said.

“It’s hard to fix something if you don’t really know what’s broken, and we are optimistic that a better understanding can help lead to new solutions,” Corey said.

In addition, the new findings may help inform study in other areas of the body. 

“We have many different mechanical senses besides hearing, such as touch, the sensation of blood pressure, and certain types of pain,” Corey added. “We understand hearing in more molecular detail than any of the others—knowledge that can help us probe the workings of other mechanical senses.”

Additional authors on the study include Darren Yang and Mounir Koussa.

The work was supported by the National Institutes of Health (grants F31 DC016199, R01 DC000304, R01 DC002281, and R35 GM119537).

What Dome size is best

Joe B.

I have a couple of questions before I make my first ear mold with the kit I received yesterday.   I found the videos on you tube but they are not specific as to what type of dome gives the best results.

  1.   I have Siemens Pure S receivers that I currently use with tulip (semi closed) click domes.  I have a number of other styles and sizes that I have used and have spares of.  What is the best style to use to ensure proper fit and ability to clean the click dome and remove it to replace the wax guard on the receiver?  It seems that it would be better to use a smaller diameter click dome.  I have some 4mm that are the smallest made as well as 8 mm.  Does it make any difference to use a closed vs open click dome?  It would seem that it would no longer make a difference except for keeping the material from being  forced past the end of the receiver.
  2. I currently use concha locks to help keep the receivers in my ears.  Should I remove the concha lock or just leave it in place.  It seems like it should no longer be required
  3. Is the wire on the receiver strong enough to pull out the finished ear mold or should I add a piece of nylon fishing line to the mold material to prevent strain on the wire when pulling it out like a click mold has?
  4. I also have an open fit BTE with thin tubes that I use from time to time as a backup.  The same questions apply from above.  Will an open vs closed dome make any difference or is a dome even required as the tube has ridges for the mold material to adhere to?  Should I clip off the concha lock?

I am looking forward to do it right the first time and not risk ruining a receiver in the process.
Thanks,

Joe Blazenski

~~~~~~~~~~~~

Hi Joe, 2/2/21

 thanks for your questions. It was very thorough but did not mention your hearing loss. Read the printed instructions that refers briefly to hearing loss considerations. I suspect that you have a severe loss from your comments..
 The concha lock is no longer needed. Keep the putty off the wax block so you can access it for replacement. You don’t need a large, tight dome. An Open Dome can lock the putty in the holes for a secure retention.
The click mold plastic pull is a good idea. Though I don’t use it. When I remove the earmold and hearing aid, I pull on the Pinna (Ear flap) which straightens the canal, making it easy to remove the earmold. 

~~~~~~~~~~~

Don, 2/3/21
  I am very pleased with the results.  I have not had earmolds before and they are a world of difference from the open fit domes.  No more feedback next to a cupboard door and no more fiddling to reset the receivers into my ears and soft sounds are easier to hear.

  FYI my hearing loss is ski slope with moderately severe at the high end – 70db @ 6000 on both ears.  The left low end is normal and the right low end mild to moderate from an ear infection decades ago.

THANKS for a great product.

Joe